

LABORATORY TEST RESULTS

Report for: Winkler USA

88 South State Street Hackensack, NJ 07601 Attention: Paul Sancraian

Product ID(s): Scudo	Manufacturer:	Winkler USA
Date(s) Received: Feb. 6, 2013 May 18, 2015	Sampling:	Winkler SRL
PRI-CMT Project No.: WNKL-002-02-01 WNKL-017-02-01	Date(s) Tested:	Feb. 18, 2013 – Sep. 29, 2013 May 27, 2015 – Jun. 24, 2015

Subject: Evaluate Winkler USA's Scudo for waterproofing requirements in accordance

with ICC-ES AC29: Acceptance Criteria for Cold, Liquid-Applied, Below-

Grade, Exterior Dampproofing and Waterproofing Materials.

Test Methods: Testing was completed as described in ICC-ES AC29 (Approved June 2011):

Acceptance Criteria for Cold, Liquid-Applied, Below-Grade, Exterior Dampproofing and Waterproofing Materials. The test methods assigned included ASTM C 836-06: Standard Specification for High Solids Content, Cold Liquid-Applied Elastomeric Waterproofing Membrane for Use with Separate wearing Course, ASTM D 2939-03: Standard Test Methods for Emulsified Bitumens Used as Protective Coatings, ASTM D 5385-93(2006): Standard Test Method for Hydrostatic Pressure Resistance of Waterproofing Membranes, ASTM E 96-05: Standard Test Methods for Water Transmission of Materials, and ASTM E 154-99: Standard Test Method for Water Vapor Retarders Used in Contact with Earth

Under Concrete Slabs, on Walls, or Ground Cover.

For testing, product was applied at 80mil wet (or 20ft²/gal).

Product Sampling: Product was provided by Winkler SRL. Winkler USA shall provide declaration

certifying that the product submitted for testing is representative of the standard

manufactured product.

WNKL-002-02-01 PRI-CMT Accreditations: IAS TL-189; Miami-Dade 11-0429.05; Florida TST5878; Los Angeles TA24819; CRRC The test results, opinions, or interpretations are based on the material supplied by the client. This report is for the exclusive use of stated client. No reproduction or facsimile in any form can be made without the client's permission. This report shall not be reproduced except in full without the written approval of this laboratory. PRI Construction Materials Technologies, LLC. assumes no responsibility nor makes a performance or warranty statement for this material or products and processes containing this material in connection with this report.

Results:

ICC-ES AC29

perty	Test Method	Result	Requirement
sical Requirements			
istance to Deterioration in Contacting Soil			
nsterilized Soil; No. 6 Seive;			
l 5.5-7.0;			
ond. @ 82.4±1.8°F & 70±3%RH;			
Weight Loss (%)	ΔSTM F154	0.2	< 10
	AOTWEIOT	0.2	= 10
	ASTM F96		
		0.1	≤ 1
			D (500) (
	ASTM D5385	NR	•
			lowest value
	4 CT14 D0000		Nia laliatania a au
		Pass	
	ivietnod A		reemulsilication
			Λ -
•	ASTM C836	Pass	
			± 5 111113
	ASTM C794	6.4	> 1
	7.01W 0754	0.4	- '
ond. 7d @ 158±3.6°F;	ASTM C1305	Pass	No Cracking
est 10 cycles @ -15°F;			
est Rate = 0.125in/h from 0.000in to 0.125in;			
sual Inspection in extended position			
ensibility after Heat Aging [Pass/Fail]			
specimens; 3in x 4in;			
ond. 14d @ 73.4±3.6°F & 50±10%RH followed by;	ASTM C1522	Dace	No Cracking
ond. 14d @ 158±3.6°F;		F 055	INO CIACKING
est Rate = 0.5in/min from 0.00in to 0.25in;			
sual Inspection in extended position			
Weight Loss (%) After Soil Conditioning Water Vapor Permeance (Perm) After Soil Conditioning; 5 specimens; 3.5in ø; Weathering side to higher vapor pressure; Proc. A – 50±2%RH to ~0%RH @ 73.4°F Hydrostatic Pressure over cracks (ft of water) After Soil Conditioning; 3 specimens; 4in x 4in; crack = 2in x 0.0625in; Test Condition 73.4±3.6°F & 50±5%RH istance to Water [Pass/Fail] specimens; 4in x 4in; ure. 24h @ 140±5°F followed by; merse 24h @ 75±5°F nain in Place During Application [Pass/Fail] specimen; 6in x 3in; coats @ 40mils (wet) each ≈ 60mils (dry) ond. vertical 24h @ 73.4±3.6°F & 50±5%RH esion-in-Peel (after water immersion) (lbf/in) specimens; 1in wide; ond. 14d @ 73.4±3.6°F & 50±5%RH followed by; ond. 7d @ 158±3.6°F; iest Speed 2.0in/min; iest Condition 73.4±3.6°F & 50±5%RH *Temperature Crack Bridging [Pass/Fail] specimens; 2in x 2in; irre. 14d @ 73.4±3.6°F, & 50±5%RH followed by; ond. 7d @ 158±3.6°F; iest 10 cycles @ -15°F; iest Rate = 0.125in/h from 0.000in to 0.125in; sual Inspection in extended position ensibility after Heat Aging [Pass/Fail] specimens; 3in x 4in; ond. 14d @ 73.4±3.6°F, & 50±10%RH followed by; ond. 14d @ 73.4±3.6°F; iest Rate = 0.5in/min from 0.00in to 0.25in; iest Rate = 0.5in/min from 0.00in to 0.25in;	ASTM C794 ASTM C1305	Pass Pass	≤ 10 Seport 50% of lowest value No blistering of reemulsification As recommended by manufacture ± 5 mils ≥ 1 No Cracking No Cracking

Notes: See Appendix for individual specimen results.

TKP-002-02-01 PRI-CMT Accreditations: IAS TL-189; Miami-Dade 11-0429.05; Florida TST5878; Los Angeles TA24819; CRRC The test results, opinions, or interpretations are based on the material supplied by the client. This report is for the exclusive use of stated client. No reproduction or facsimile in any form can be made without the client's permission. This report shall not be reproduced except in full without the written approval of this laboratory. PRI Construction Materials Technologies, LLC. assumes no responsibility nor makes a performance or warranty statement for this material or products and processes containing this material in connection with this report.

Winkler USA ICC-ES AC29 Scudo Page 3 of 4

Statement of Compliance: The product evaluated complies with the waterproofing requirements of ICC-ES AC29: Acceptance Criteria for Cold, Liquid-Applied, Below-Grade, Exterior Dampproofing and Waterproofing Materials.

Signed:	Rick Range Laboratory Technician	Signed: _	Brad Grzybowski Managing Director				
Date:	July 23, 2015	Date:	July 23, 2015				

Report Issue History:

	Issue #	Date	Pages	Revision Description (if applicable)
<u> </u>	Original	12/03/2014	4	NA
F	Revision1	07/23/2015	4	Included test results for waterproofing requirements

APPENDIX FOLLOWS

Appendix: Test Data Worksheet

Physical Properties											
Property	Method				Data			Test F		Requirement	Outcome
Resistance to Deterioration in Contacting Soil; [Pass/Fail]	ASTM D 226	1	2	3	4	5	6	Average	Std. Dev.	_	Pass
Weight Loss (%)	ASTM E154	0.18	0.21	0.21	0.22	0.18	0.20	0.2	0.0	10	
Water Vapor Transmission (Perm)	ASTM E96	0.10	0.11	0.11	0.12	0.10		0.1	0.0	1	
Hydrostatic Pressure (psi)	ASTM D5385							No Data	No Data	Report 50%	
Resistance to Water; [Pass/Fail]	ASTM D2939	No Blister	No Blister	No Blister				No Blister	NA	No Blister	Pass
Remain in Place During Application; [Pass/Fail]	ASTM C836									0.060	Pass
Target 0.060in mils (dry)		0.061	0.062	0.061	0.060	0.061		0.061	0.001	-	
Adhesion in Peel; (lbf/in-width)	ASTM C794									1	Pass
After 7-Day Water Immersion		6.86	6.14	6.14	6.38			6.4	0.3		
ow Temperature Crack Bridging; Pass/Fail]	ASTM C1305	No Cracking		No Cracking	NA	No Cracking	Pass				
Extensibility After Heat Aging; [Pass/Fail]	ASTM C1522	No Cracking	No Cracking	No Cracking		,		No Cracking	NA	No Cracking	Pass

END OF REPORT